596 research outputs found

    Investigating the Cost of Anonymity on Dynamic Networks

    Full text link
    In this paper we study the difficulty of counting nodes in a synchronous dynamic network where nodes share the same identifier, they communicate by using a broadcast with unlimited bandwidth and, at each synchronous round, network topology may change. To count in such setting, it has been shown that the presence of a leader is necessary. We focus on a particularly interesting subset of dynamic networks, namely \textit{Persistent Distance} - G({\cal G}(PD)h)_{h}, in which each node has a fixed distance from the leader across rounds and such distance is at most hh. In these networks the dynamic diameter DD is at most 2h2h. We prove the number of rounds for counting in G({\cal G}(PD)2)_{2} is at least logarithmic with respect to the network size ∣V∣|V|. Thanks to this result, we show that counting on any dynamic anonymous network with DD constant w.r.t. ∣V∣|V| takes at least D+Ω(log ∣V∣)D+ \Omega(\text{log}\, |V| ) rounds where Ω(log ∣V∣)\Omega(\text{log}\, |V|) represents the additional cost to be payed for handling anonymity. At the best of our knowledge this is the fist non trivial, i.e. different from Ω(D)\Omega(D), lower bounds on counting in anonymous interval connected networks with broadcast and unlimited bandwith

    A Blockchain-Based Solution for Enabling Log-Based Resolution of Disputes in Multi-party Transactions

    Get PDF
    We are witnessing an ongoing global trend towards the automation of almost any transaction through the employment of some Internet-based mean. Furthermore, the large spread of cloud computing and the massive emergence of the software as a service (Saas) paradigm have unveiled many opportunities to combine distinct services, provided by different parties, to establish higher level and more advanced services, that can be offered to end users and enterprises. Business-to-business (B2B) integration and third-party authorization (i.e. using standards like OAuth) are examples of processes requiring more parties to interact with each other to deliver some desired functionality. These kinds of interactions mostly consist of transactions and are usually regulated by some agreement which defines the obligations that involved parties have to comply with. In case one of the parties claims a violation of some clause of such agreement, disputes can occur if the party accused of the infraction refuses to recognize its fault. Moreover, in case of auditing, for convenience reasons a party may deny to have taken part in a given transaction, or may forge historical records related to that transaction. Solutions based on a trusted third party (TTP) have drawbacks: high overhead due to the involvement of an additional party, possible fees to pay for each transaction, and the risks stemming from having to blindly trust another party. If it were possible to only base on transaction logs to sort disputes out, then it would be feasible to get rid of any TTP and related shortcomings. In this paper we propose SLAVE, a blockchain-based solution which does not require any TTP. Storing transactions in a public blockchain like Bitcoin’s or Ethereum’s provides strong guarantees on transactions’ integrity, hence they can be actually used as proofs when controversies arise. The solution we propose defines how to embed transaction logs in a public blockchain, so that each involved party can verify the identity of the others while keeping confident the content of transactions

    Survey of Machine Learning Techniques for Malware Analysis

    Get PDF
    Coping with malware is getting more and more challenging, given their relentless growth in complexity and volume. One of the most common approaches in literature is using machine learning techniques, to automatically learn models and patterns behind such complexity, and to develop technologies for keeping pace with the speed of development of novel malware. This survey aims at providing an overview on the way machine learning has been used so far in the context of malware analysis. We systematize surveyed papers according to their objectives (i.e., the expected output, what the analysis aims to), what information about malware they specifically use (i.e., the features), and what machine learning techniques they employ (i.e., what algorithm is used to process the input and produce the output). We also outline a number of problems concerning the datasets used in considered works, and finally introduce the novel concept of malware analysis economics, regarding the study of existing tradeoffs among key metrics, such as analysis accuracy and economical costs

    Managing the Cyber Risk in a Decoupled World: Does This Bring Potential Opportunities in Computer Science? (Invited Talk)

    Get PDF

    Building Regular Registers with Rational Malicious Servers and Anonymous Clients

    Get PDF
    The paper addresses the problem of emulating a regular register in a synchronous distributed system where clients invoking read()\mathsf{read}() and write()\mathsf{write}() operations are anonymous while server processes maintaining the state of the register may be compromised by rational adversaries (i.e., a server might behave as rational malicious Byzantine process). We first model our problem as a Bayesian game between a client and a rational malicious server where the equilibrium depends on the decisions of the malicious server (behave correctly and not be detected by clients vs returning a wrong register value to clients with the risk of being detected and then excluded by the computation). We prove such equilibrium exists and finally we design a protocol implementing the regular register that forces the rational malicious server to behave correctly

    Non Trivial Computations in Anonymous Dynamic Networks

    Get PDF
    In this paper we consider a static set of anonymous processes, i.e., they do not have distinguished IDs, that communicate with neighbors using a local broadcast primitive. The communication graph changes at each computational round with the restriction of being always connected, i.e., the network topology guarantees 1-interval connectivity. In such setting non trivial computations, i.e., answering to a predicate like "there exists at least one process with initial input a?", are impossible. In a recent work, it has been conjectured that the impossibility holds even if a distinguished leader process is available within the computation. In this paper we prove that the conjecture is false. We show this result by implementing a deterministic leader-based terminating counting algorithm. In order to build our counting algorithm we first develop a counting technique that is time optimal on a family of dynamic graphs where each process has a fixed distance h from the leader and such distance does not change along rounds. Using this technique we build an algorithm that counts in anonymous 1-interval connected networks

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv

    SAFE: Self-Attentive Function Embeddings for Binary Similarity

    Get PDF
    The binary similarity problem consists in determining if two functions are similar by only considering their compiled form. Advanced techniques for binary similarity recently gained momentum as they can be applied in several fields, such as copyright disputes, malware analysis, vulnerability detection, etc., and thus have an immediate practical impact. Current solutions compare functions by first transforming their binary code in multi-dimensional vector representations (embeddings), and then comparing vectors through simple and efficient geometric operations. However, embeddings are usually derived from binary code using manual feature extraction, that may fail in considering important function characteristics, or may consider features that are not important for the binary similarity problem. In this paper we propose SAFE, a novel architecture for the embedding of functions based on a self-attentive neural network. SAFE works directly on disassembled binary functions, does not require manual feature extraction, is computationally more efficient than existing solutions (i.e., it does not incur in the computational overhead of building or manipulating control flow graphs), and is more general as it works on stripped binaries and on multiple architectures. We report the results from a quantitative and qualitative analysis that show how SAFE provides a noticeable performance improvement with respect to previous solutions. Furthermore, we show how clusters of our embedding vectors are closely related to the semantic of the implemented algorithms, paving the way for further interesting applications (e.g. semantic-based binary function search).Comment: Published in International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA) 201
    • …
    corecore